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Performance evaluation of a custom GPT for control engineering using the benchmark dataset ControlBench

Abstract : In this paper, we evaluate GPT-4o using ControlBench, a benchmark dataset for control engineering.

Additionally, we proposed a method to improve response accuracy by developing a customized GPT that leverages

prompt engineering methods, and we also evaluate this customized GPT.

1 はじめに
近年、生成AI（Generative AI）技術は画像生成や自然
言語処理の分野で目覚ましい発展を遂げている。そのた
め、LLM(Large Language Model)が制御理論において
どのような役割を果たせるのかは非常に興味深い。LLM

を制御系設計プロセスに組み込むことで、設計の各段階
を大幅に効率化できる可能性がある。
筆者らの先行研究において、大学学部レベルの古典制
御理論の演習問題に対して、GPT-4の能力評価を行った
[1]。基本的な演習問題 97問に対して、GPT-4は約 66%

の正答率を示した。また、[2]では、大学学部レベルの現
代制御理論の演習問題に対して、GPT-4oの能力評価お
よび回答精度を向上させる手法を提案した。さらに、[3]

では、GPT-4、Claude 3 Opus、Gemini 1.0　 Ultraな
どの主要な LLMが制御工学に対してどれほどの能力を
示すのか、制御工学に関する 147問の問題セットである
ControlBenchを用いたベンチマーク評価を行っている。
ベンチマーク評価の結果、GPT-4は 45.6%の正答率を示
している。しかしながら、GPTモデルの評価は GPT-4

のみに留まっており、より新しい GPTモデルに対する
評価は行われていない。さらに、GPTモデルの回答精度
を向上させる手法は提案されていない。
そこで、本論文では、GPT-4に比べ数学や推論能力に
優れたGPT-4oに対するベンチマーク評価を行う。また、
[1]、[2]で提案した回答精度向上手法を ControlBenchに
対して適用し、評価・考察を行う。

2 提案手法
2.1 GPTs

GPTモデルをはじめとしたLLMは、一般に、ユーザー
が入力 (プロンプト)を提供し、モデルは入力に基づいて
出力を生成する。そのため、モデルから望ましい出力を
得るためにプロンプトを最適化する手法である、プロン

プトエンジニアリングに関する研究が注目されるように
なった [4]。
プロンプトエンジニアリングは、大規模データセット
を必要とせずに、特定のタスクへの適応を可能にする手
法である。追加のデータやモデルの再学習なしに、プロ
ンプトの工夫だけで望ましい応答を引き出すことが可能
となる。これにより、データやコストが限られた状況で
も効果的に LLMの性能を向上させることが期待される。

OpenAIの提供する GPTBuilderでは、GPTsと呼ば
れるカスタマイズされた ChatGPTを作成できる。主に
「Instructions」、「Knowledge」、「Capacities」、「Actions」
の 4つのパラメータを編集することで、特定のタスクに
適したGPTを構築することが可能である。GPTBuilder

で編集可能なパラメータの概要を表 1に示す。

表 1: Parameters of GPTs
Parameter　 Function

Instructions Prompts given in advance to GPT

Knowledge Utilization of data

Capabilities Whether to use Code Interpreter

Actions Use of third party APIs

本研究では、InstructionsおよびCapabilities(Code In-

terpreter)を用いる。Instructionsに与えた指示は以下の
通りである。

# Instructions

- You are given a control engineering problem.

- Be sure to answer the given question according to

the following constraints.

# Constraints

- Always use ”Code Interpreter” for numerical and

symbolic calculations.

- Always use Code Interpreter to draw graphs.



2.2 Code Interpreter

Code Interpreterは、ChatGPTに統合されたコード実
行のサンドボックス環境である。ユーザーの入力に基づ
いてプログラムコードを生成・実行し、その結果をリアル
タイムで提供することができる。Pythonを使用したデー
タ処理や分析、可視化のほか、行列演算などの数学的な
数値計算やシミュレーションも可能である。数値計算ライ
ブラリであるNumPyや数式処理ライブリの SymPy、数
学・科学・工学分野のための数値解析ライブラリの SciPy

など、多くの Pythonライブラリに対応している。
また、LLMは一般的なテキストを生成する性能と比較
して、コードを効果的に生成する際に顕著な能力を示す
ことが知られている。特に計算エラーに関連する問題は、
Program of Thoughts（PoT）を用いることで軽減可能
である [5]。例えば化学の問題において、LLMの回答出
力を Pythonコードに変換することで、計算エラーを大
幅に減少させることが示されている [6]。また、予め具体
的な Pythonコードを与え、必要に応じて実行させるこ
とで、GPTモデルの欠点とも言える回答のランダム性を
軽減させることができる [1]。Code Interpreterの実行時
の流れを図 1に示す。

図 1: Flow to use Code Interpreter

3 GPTモデルの性能評価
3.1 ControlBench

制御工学用ベンチマークデータセットである Control-

Benchは、ミシガン大学（EECS 460）とイリノイ大学
アーバナ・シャンペーン校（ECE 486）の制御工学に関
する講義から集めた問題から構成されている [3]。また、
マルチモーダル化が進む LLMの性能を多面的に評価す
るために、テキスト形式と画像形式の要素が融合されて
いる。各トピックの総問題数および視覚的要素を含む問
題数を表 2に示す。

3.2 実験手順
GPTモデルへの入力は、ControlBenchのTeXファイ
ルからコピーしたものである。そうして得られた GPT

モデルの回答と模範解答を照合し、正誤判定を行う。な
お、正誤判定についての採点基準は、以下の通りである。

表 2: Total number of problems for each topic and prob-

lems with visual component

Topic Problems (Visuals)

Background 28 (0)

Stability 19 (0)

Time response 21 (3)

Block diagrams 5 (5)

Control System Design 24 (0)

Bode Analysis 15 (13)

Root-Locus Design 7 (1)

Nyquist Design 5 (4)

Gain/Phase Margins 9 (0)

System Sensitivity Measures 3 (0)

Loop-shaping 4 (0)

Advanced Topics 7 (0)

Total 147 (26)

� 答えが完全に正しい場合にのみ得点を与え、それ以
外の部分的な正答には点を与えない。

� 小問内に複数の問題が定義されている場合も、全て
の問題に正答している場合のみ正解と判定する。

� ChatGPTに問題を与えたのち、追加の指示は与え
ず、1度の出力で得られた回答のみで採点する。

また、本論文での評価指標であるAccuracy(ACC)は、全
問題に対する正答数の割合である。

3.3 実験結果
実験結果を表 3に示す。作成した問題セットをトピック
ごとに分類し、それぞれのトピックに対するモデルの正答
率 (ACC)をパーセンテージ (%)で表している。ACCの
横の括弧内で正答数/総問題数を示している。表 3より、
GPT-4oは学部レベルの制御工学の問題に対して 42.9%

の正答率を示し、Code Interpreterを使うよう指示した
GPTsでは 47.6%の正答率を示し、4.7ポイントの正答率
の向上が見られた。なお、Transformerをモデルアーキ
テクチャとした多くの LLMは、確率に基づいた予測に
よる回答をする点に注意が必要である [7]。そのため、こ
の結果は制御工学に対する GPTモデルの能力の、ひと
つの目安として捉える必要がある。

4 考察
[2]において、GPTsを用いて現代制御理論用のGPTs

を作成し、大学院入試問題 45問での評価の結果、正答率
が 26.6%向上し、64.4%の正答率が得られることが確認さ



表 3: Comparison of GPTs, GPT-4o and GPT-4

GPTs GPT-4o GPT-4(出典:[3])

Topics ACC ACC ACC

Background 60.7% (17/28) 53.5% (15/28) 60.7% (17/28)

Stability 73.7% (14/19) 63.2% (12/19) 57.9% (11/19)

Time response 76.2% (16/21) 42.9% (9/21) 57.1% (12/21)

Block diagrams 40.0% (2/5) 20.0% (1/5) 40.0% (2/5)

Control System Design 41.7% (10/24) 33.3% (8/24) 29.2% (7/24)

Bode Analysis 0.0% (0/15) 6.66% (1/15) 6.66% (1/15)

Root-Locus Design 14.3% (1/7) 28.6% (2/7) 28.6% (2/7)

Nyquist Design 0.0% (0/5) 0.0% (0/5) 0.0% (0/5)

Gain/Phase Margins 55.6% (5/9) 55.6% (5/9) 66.7% (6/9)

System Sensitivity Measures 100.0% (3/3) 100.0% (3/3) 100.0% (3/3)

Loop-shaping 0.0% (0/4) 50.0% (2/4) 25.0% (1/4)

Advanced Topics 28.6% (2/7) 71.4% (5/7) 71.4% (5/7)

Total 47.6% (70/147) 42.9% (63/147) 45.6% (67/147)

れている。結果を表 4に示す。そこで本研究では、数値計
算や数式処理における回答精度向上が最も重要であると
考え、Instructionsに Code Interpreterを使う指示のみ
を与えた。しかしながら、表 3より大幅な精度向上は見
られなかった。そのため、Code Interpreterを用いる手
法だけでなく、Zero-shot CoT Prompting[8]、Few-Shot

Prompting[9, 10]など、様々なプロンプトエンジニアリン
グ手法を複合的に組み合わせる必要があると考えられる。
また、[3]では採点基準が明記されていないため、本研
究での結果との単純比較はできない点に注意されたい。

5 おわりに
本研究では、制御工学用ベンチマークデータセットで
あるControlBenchを用いた、GPT-4oおよび制御工学用
カスタムGPTの性能評価を行った。今後の課題として、
LLMの回答のランダム性に対する検証が求められる。実
験結果に対して統計的検定を行い、結果に有意な差が見
られるかどうかを判断する必要がある。
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